85321, Systems Administration Chapter 8: Shell
Programming

Chapter 8

Shell Programming

| ntroduction

Shell Programming - WHY?

Whileit is very nice to have ashell at which you can issue commands, have
you had the feeling that something ismissing? Do you fedl the urge to issue
multiple commands by only typing one word? Do you feel the need for
variables, logic conditions and loops? Do you strive for automation?

If s, then welcome to shell programming.

(If you answered no to any of the above then you are obvioudy in the wrong
frame of mind to be reading this — please try again later :)

Shell programming allows system administrators (and users) to create small
(and occasionally not—so—small) programs for various purposes including
automation of system administration tasks, text processing and installation of
software.

Perhaps the most important reason why a Systems Administrator needs to be
able to read and understand shell scriptsisthe UNIX startup process. UNIX
uses a large number of shell scriptsto perform alot of necessary system
configuration when the computer first starts. If you can’t read shell scripts
you can’'t modify or fix the startup process.

Shell Programming - WHAT?

A shell program (sometimes referred to as a shell script) isatext file
containing shell and UNIX commands. Remember — a UNIX command isa
physical program (likecat , cut and gr ep) where as a shell command is an
“interpreted” command — there isn’’t aphysical file associated with the
command; when the shell sees the command, the shell itself performs certain
actions (for example, echo)

When a shell program is executed the shell reads the contents of the file line
by line. Eachlineisexecuted asif you were typing it at the shell prompt.
Thereisn't anything that you can place in a shell program that you can’t type
at the shell prompt.

Shell programs contain most things you would expect to find in asimple
programming language. Programs can contain services including:

§ variables

§ logic constructs (IF THEN AND OR etc)

§ looping constructs (WHILE FOR)

§ functions

§ comments (strangely the most least used service)

David Jones, Bruce Jamieson (25/ 02/ 00) Page 1

85321, Systems Administration Chapter 8: Shell
Programming

The way in which these services are implemented is dependant on the shell
that is being used (remember — there is more than one shell). While the
variations are often not major it does mean that a program written for the
bourne shell (

David Jones, Bruce Jamieson (25/ 02/ 00) Page 2

85321, Systems Administration Chapter 8: Shell
Programming

sh/bash) will not runin the c shell (csh). All the examplesin this chapter
are written for the bourne shell.

Shell Programming - HOW?

Shell programs are alittle different from what you'd usually classas a
program. They are plain text and they don’t need to be compiled. The shell
"interprets’ shell programs — the shell reads the shell program line by line and
executes the commands it encounters. If it encounters an error (Syntax or
execution), it isjust asif you typed the command at the shell prompt — an
error is displayed.

Thisisin contrast to C/C++, Pascal and Ada programs (to name but afew)
which have source in plain text, but require compiling and linking to produce a
final executable program.

So, what are the real differences between the two types of programs? At the
most basic level, interpreted programs are typically quick to write/modify and
execute (generaly in that order and in a seemingly endlessloop :). Compiled
programs typically require writing, compiling, linking and executing, thus are
generally more time consuming to develop and test.

However, when it comes to executing the finished programs, the execution
gpeeds are often widely separated. A compiled/linked program is abinary file
containing a collection direct systems calls. The interpreted program, on the
other hand, must first be processed by the shell which then converts the
commands to system calls or calls other binaries — this makes shell programs
dow in comparison. In other words, shell programs are not generally efficient
on CPU time.

Isthere a happy medium? Yes! Itiscaled Perl. Perl isan interpreted
language but isinterpreted by an extremely fast, optimised interpreter. Itis
worth noting that a Perl program will be executed inside one process, whereas
ashell program will be interpreted from a parent process but may launch many
child processesin the form of UNIX commands (ie. each call to a UNIX
command is executed in anew process). However, Perl isafar more difficult
(but extremely powerful) tool to learn — and this chapter is called "Shell
Programming"...

TheBasics

A Basic Program

It istraditional at this stage to write the standard "Hello World" program. To
do thisin ashell program is so obscenely easy that we' re going to examine
something a bit more complex — a hello world program that knows who you
are...

To create your shell program, you must first edit afile — name it something
like "hello", "hello world" or something equally asimaginative — just don’t
cal it "test" — we will explain why later.

In the editor, type the following (or you could go to the 85321 website/CD—
ROM and cut and paste the text from the appropriate web page)

David Jones, Bruce Jamieson (25/ 02/ 00) Page 3

85321, Systems Administration Chapter 8: Shell
Programming

#!1/ bi n/ bash
This is a programthat says hello

echo

bash:

"Hel |l o $LOGNAME, | hope you have a nice day!"

(You may change the text of line three to reflect your current mood if you
wish)

Now, at the prompt, type the name of your program — you should see
something like:

./helloworld: Perm ssion denied

Why?

The reason is that your shell program isn’t executable because it doesn’t have
its execution permissions set. After setting these (Hint: something involving

the chnod command), you may execute the program by again typing its name
at the prompt.

An aternate way of executing shell programsis to issue acommand at the
shell prompt to the effect of:

<shel | > <shel | progran

€g

bash hell oworl d

This simply instructs the shell to take alist of commands from a given file
(your shell script). This method does not require the shell script to have
execute permissions. However, in general you will execute your shell scripts
viathe first method.

And yet you may still find your script won’’'t execute — why? On some UNIX
systems (Red Hat Linux included) the current directory (.) is not included in
the PATH environment variable. This mans that the shell can’’t find the script
that you want to execute, even when it’’s sitting in the current directory! To
get around this either:

§ Modify the PATH variable to include the “.” directory:

PATH=$PATH: .

§ Or, execute the program with an explicit path:

./ helloworld

An Explanation of the Program

Lineone, #! / bi n/ bash isused to indicate which shell the shell program is
to berunin. If this program was written for the C shell, then you might have
#! / bi n/ csh instead.

It is probably worth mentioning at this point that UNIX “executes’ programs
by first looking at the first two bytes of thefile (thisis similar to the way MS-
DOS looks at the first two bytes of executable programs; all .EXE programs
start with “MZ”). From these two characters, the system knows if the fileis an
interpreted script (#!) or some other file type (more information can be
obtained about thisby typingman fil e). If thefileisan interpreted script,
then the system looks for afollowing path indicating an interpreter. For
example:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 4

85321, Systems Administration Chapter 8: Shell
Programming

#1/ bi n/ bash
#! [/ usr/ bi n/ perl
#!/ bi n/ sh

Areadl valid interpreters.

Linetwo, # This is a programthat says hello,is(you
guessed it) acomment. The "#" in ashell script isinterpreted as "anything to
theright of thisis a comment, go onto the next line". Notethat it issimilar to
line one except that line one hasthe"! " mark after the comment.

Comments are a very important part of any program — it isareally good idea
to include some. The reasons why are standard to all languages — readability,
maintenance and self congratulation. It is more so important for a system
administrator asthey very rarely remain at one site for their entire working
career, therefore, they must work with other people’'s shell scripts (as other
people must work with theirs).

Always have a comment header; it should include things like:

AUTHOR VWo wote it
DATE: Date first witten
PROGRAM Narme of the ﬁrogram
USAGE: How to run the script; include any paraneters
PURPCSE: Describe in nore than three words what the
program does
#
FI LES: Files the shell script uses
#
NOTES: Optional but can include a list of "features”
to be fixed
#
H STORY: Revi si ons/ Changes
Thisformat isn't set in stone, but use common sense and write fairly self
documenting programs.
Version Control Systems
Those of you studying software engineering may be familiar
with the term, version control. Version control allows you to
keep copies of filesincluding alist of who made what changes
and what those changes were. Version control systems can be
very useful for keeping track of source code and isjust about
compulsory for any large programming project.
Linux comeswith CVS (Concurrent Versions System) a
widely used version control system. While version control
may not seem all that important it can save alot of heartache.
Many large siteswill actually keep copies of system
configuration filesin aversion control system.
Linethree, echo "Hel | o $LOGNAVE, | hope you have a nice
day! " isactualy acommand. Theecho command prints text to the screen.
Normal shell rulesfor interpreting special characters apply for the echo
statement, so you should generally enclose most text in""'. The only tricky bit
about thislineisthe $LOGNAME . What isthis?
$LOGNAME isa shell variable; you can see it and others by typing "set" at the
shell prompt. In the context of our program, the shell substitutes the
$LOGNANME value with the username of the person running the program, so the
output looks something like:
Hell o jam esob, | hope you have a nice day!

David Jones, Bruce Jamieson (25/ 02/ 00) Page 5

85321, Systems Administration Chapter 8: Shell
Programming

All variables are referenced for output by placing a"$" sign in front of them -
we will examine thisin the next section.

Exercises

Modify the hel | owor | d program so its output is something similar

to:
Hel | o <usernane>, wel cone to <nachi ne nane>

All You Ever Wanted to Know About
Variables

Y ou have previously encountered shell variables and the way in which they
areset. To quickly revise, variables may be set at the shell prompt by typing:

[david@ail e david]$ variable="a string"

Since you can type this at the prompt, the same syntax applies within shell
programs.

Y ou can also set variablesto the results of commands, for example:

[david@aile david]$ variable='Is -al"’
(Remember — the ‘ isthe execute quote)
To print the contents of a variable, smply type:

[davi d@ai |l e david]$ echo $variable

Note that we' ve added the "$" to the variable name. Variables are always
accessed for output with the" $" sign, but without it for input/set
operations.

Returning to the previous example, what would you expect to be the output?
Y ou would probably expect the output from| s —al to be something like:

drwxr—-xr-x 2 jam esob users 1024 Feb 27 19:05 ./

drwxr —xr-x 45 | am esob users 2048 Feb 25 20:32 ../
-rw-r——r—-— 1 jamesob users 851 Feb 25 19: 37 conX
-rw-r——r—-— 1 jamesob users 12517 Feb 25 19:36 confile
-rw-r——r—-— 1 jamesob users 8 Feb 26 22:50 helloworld
-rw-r——r—-— 1 jamesob users 46604 Feb 25 19: 34 net -acct

and therefore, printing a variable that contains the output from that command
would contain something similar, yet you may be surprised to find that it looks
something like:

drwxr —xr-x 2 jami esob users 1024 Feb 27 19:05 ./ drwxr-xr-x 45

jam esob users 2048 Feb 25 20:32 ../ -rwr—--r—— 1 jani esob users 851

Feb 25 19:37 conX —rw-r—--r—— 1 jam esob users 12517 Feb 25 19: 36

confile -rwr—-—-r—— 1 jam esob users 8 Feb 26 22:50 helloworld —-rw-r--
r-— 1 jam esob users 46604 Feb 25 19: 34 net —acct

Why?

When placing the output of a command into a shell variable, the shell removes
all the end—of-line markers, leaving a string separated only by spaces. The

David Jones, Bruce Jamieson (25/ 02/ 00) Page 6

85321, Systems Administration Chapter 8: Shell
Programming

use for thiswill become more obvious later, but for the moment, consider
what the following script will do:

#! / bi n/ bash
$filelist=1s"
cat $filelist

$$

Exercise

Typein the above program and run it. Explain what is happening.
Would the above program work if "I s —al " was used rather than

"l s" = Why/why not?

Predefined Variables

There are many predefined shell variables, most established during your login.
Examplesinclude $L OGNAME, $HOSTNAME and $TERM- these names are
not aways standard from system to system (for example, $L OGNANE can also
be called $USER). There are however, severa standard predefined shell
variables you should be familiar with. These include:

(The current process |D)
(The exits status of |ast conmand)

How would these be useful ?

$$

3 isextremely useful in creating unique temporary files. You will often find
the following in shell programs:

sone comand > /tnp/tenp. $$

sonme conmands usi ng /tnp/tenp. $$>

fnw/tnp/tenp.$$

[t mp/ t enp. $$ would always be a unique file — this allows several people
to run the same shell script ssimultaneously. Since one of the only unique
things about a processisits PID (Process—Identifier), thisisan ideal
component in atemporary file name. It should be noted at this point that
temporary files are generally located in the/ t np directory.

$?

$? becomes important when you need to know if the last command that was
executed was successful. All programs have a numeric exit status — on UNIX
systems O indicates that the program was successful, any other number
indicates afailure. We will examine how to usethisvalue at alater point in
time.

Isthere away you can show if your programs succeeded or failed? Yes! This
isdone viathe use of theexi t command. If placed asthe last command in
your shell program, it will enable you to indicate, to the calling program, the
exit status of your script.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 7

85321, Systems Administration Chapter 8: Shell
Programming

exi t isused asfollows:

exit O # Exit the script, $? 0 (success)
exit 1 # Exit the script, $? =1 (fail)

Another category of standard shell variables are shell parameters.

Parameters — Special Shell Variables

If you thought shell programming was the best thing since COBOL, then you
haven't even begun to be awed — shell programs can actually take parameters.
Table 8.1 lists each variable associated with parametersin shell programs.

Variable Purpose
$0 the name of the shell program
$1thru$9 |thefirgt thru to ninth parameters
$H the number of parameters
$* all the parameters passed represented asa single
word with individual parameters separated
$@ all the parameters passed with each parameter as a
separate word
Table 8.1
Shell Parameter Variables

The following program demonstrates a very basic use of parameters:

#!/ bi n/ bash

FI LE: par ml

VAL=" expr ${1: O} + ${2 -0} + ${3:-0}
echo "The answer is $VAL

Pop Quiz Why arewe using ${ 1: -0} instead of $1? Hint:
What would happen if any of the variables were not set?

A sampletesting of the program looks like:

[david@aile david]$ parnll 2 3 5
The answer is 10

[david@aile david]$ parnl 2 3
The answer is 5

[david@ail e david]$ parm
The answer is O

Consider the program below:

#!/ bi n/ bash

FI LE: mywc

FCOUNT='Is $* 2> /dev/null | wc -w
echo "Perform ng word count on $*"
echo

we -w $* 2> /dev/ nul

echo

echo "Attenpted to count words on $# files, found $FCOUNT"

If the program that was run in a directory containing:

conX net —acct not es. t xt shel | prog~ t1l~
confile net nasti es not es. t xt ~ study. ht m ttt
hel | owor | d net nasti es~ scanit* st udy. t xt tes/
ny_file net wat ch scani t~ study_~1. htm
mywc* net wat ch~ shel | prog par mL.*

David Jones, Bruce Jamieson (25/ 02/ 00) Page 8

85321, Systems Administration Chapter 8: Shell
Programming

Some sampl e testing would produce:

[davi d@ail e david]$ nmywe nywc
Perform ng word count on nmywc

34 nywc

Attenpted to count words on 1 files, found 1
[davi d@ai |l e david]$ mywc nywc anotherfile
Perform ng word count on nmywc anotherfile

34 nmywc

34 total

Attenpted to count words on 2 files, found 1

Exercise

Explain line by line what this program isdoing. What would happen if

the user didn’t enter any parameters? How could you fix this?

Only Nine Parameters?

Well that’swhat it looks like doesn’'t it? We have $1 to $9 — what happens if
wetry to access $10? Try the code below:

#!/ bi n/ bash

FI LE: t est par ns

echo "$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 312"
echo $*

echo $#

Run testparms as follows:

[david@aile david]$ testparns abcdef ghl j kIl
The output will look something like:

abcdef ghi a0 al a2

abcdefghlj kIl

12
Why?
The shell only has 9 command-line parameters defined at any one time $1 to
$9. When the shell sees"$10" it interpretsthisas"$1" with a"0" after it.
Thisiswhere $10 in the above resultsin a0. The aisthe value of $1 with the
0 added.
On the otherhand $* alows you to see al the parameters you typed!
So how do you access $10, $11 etc. To our rescue comestheshi ft
command. shi ft worksby removing the first parameter from the parameter
list and shuffling the parameters along. Thus $2 becomes $1, $3 becomes $2
etc. Finaly, (what was originaly) the tenth parameter becomes $9.
However, beware! Onceyou'verun shi ft, you havelost the original value
of $1 forever — it isaso removed from $* and $@. shi ft isexecuted by,
well, placing the word "shift" in your shell script, for example:

#!/ bi n/ bash

echo $1 $2 $3
David Jones, Bruce Jamieson (25/ 02/ 00) Page 9

85321, Systems Administration Chapter 8: Shell
Programming

shift

echo $1 $2 $3

Exercise

Modify the testpar ms program so the output looks something like:
abcdefghiadala2
abcdefghljkl
12
bcdefghijblb2b3
bcdefghijkl
11
cdefghijkcOclc2
cdefghljkl
10

The difference between $* and $@

$* and 3@ are very closely related. They both are expanded to become alist
of all the command line parameters passed to a script. However, there are
some subtle differences in how these two variables are treated. The subtleties
are made even more difficult when they appear to act in avery similar way (in
some situations). For example, let’s see what happens with the following shell
script

#for name in $*
for nane in $@
do
echo paramis $nane
done

The ideawith this script isthat you can test it with either $* or $@ by
uncommenting the one you want to experiment and comment out the other
line. The following examples show what happens when | run thisscript. The
first time with $@, the second with $*

[david@aile david]$ tnp.sh hello "how are you" today 1 2 3
paramis hello

paramis how

paramis are

paramis you

paramis today

paramis 1

paramis 2

paramis 3

[david@aile david]$ tnp.sh hello "how are you" today 1 2 3

paramis hello
paramis how
paramis are
paramis you
paramis today
paramis 1
paramis 2

paramis 3

Asyou can see no difference!! So what’s all this fusswith $@ and $*? The
difference comes when $@ and $* are used within double quotes. In this
situation they work asfollows

. $@
|s expanded to al the command-line parameters joined as a single word

David Jones, Bruce Jamieson (25/ 02/ 00) Page 10

85321, Systems Administration Chapter 8: Shell

Programming
with usually a space seperating them (the separating character can be
changed).

- &
Expands to al the command-line parameters BUT each command-line
parameter istreated asif it is surrounded by double quotes ™. Thisis
especially important when one of the parameters contains a space.

Let’smodify the our example script so that $@ and $* are surrounded by "

#for name in "$*"
for nane in "$@
do
echo paramis $nane
done

Now look at what happens when we run it using the same parameters as
before. Againthe $@ version is executed first then the $* version.

[david@aile david]$ tnp.sh hello "how are you" today 1 2 3
paramis hello

paramis how are you

paramis today

paramis 1

paramis 2

paramis 3

[david@aile david]$ tnp.sh hello "how are you" today 1 2 3
paramis hello how are you today 1 2 3

With the second example, where $* is used, the differenceis obvious. The
first example, where $@ is used, shows the advantage of $@. The second
parameter is maintained as a single parameter.

The basics of input/output (10)

We have aready encountered the "echo" command, yet thisisonly the"O"
part of 1O — how can we get user input into our programs? We use the
"r ead" command. For example:

#! / bi n/ bash

FI LE: testread
read X

echo "You said $X'

The purpose of this enormoudy exciting program should be obvious.

Just in case you were bored with the echo command. Table 8.2 shows afew
backslash characters that you can use to brighten your shell scripts:

David Jones, Bruce Jamieson (25/02/00) Page 11

85321, Systems Administration Chapter 8: Shell

Programming
Character Purpose
\a dert (bell)
\b backspace
\c don't display the trailing newline
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\ backdash
\nnn the character with ASCII number nnn (octal)

Table 8.2
echo backslash options

(type"man echo" to seethis exact table:)

To enable echo to interpret these backslash characters within a string, you
must issue the echo command with a"—e" switch. You may also add a"-n"
switch to stop echo printing a new-line at the end of the string — thisisa
good thing if you want to output a prompting string. For example:

#1/ bi n/ bash

FlI LE: get nane

echo -n "Pl ease enter your nane:
read NAME

echo "Your name is $NAVE"

(This program would be useful for those with a very short memory)

At the moment, we' ve only examined reading from STDIN (standard input
ak.a. the keyboard) and STDOUT (standard output a.k.a. the screen) — if we
want to bereally clever we can change this.

What do you think the following does?

read X < afile
or what about

echo $X > anotherfile

If you said that the first read the contents of af i | e into avariable $X and the
second wrote the value of $X to anot her f i | e you'd amost be correct. The
r ead operation will only read the first line (up to the end—of-line marker)
fromafi | e —it doesn't read the entirefile.

You can aso use the ">>" and "<<" redirection operators.

Exercises

David Jones, Bruce Jamieson (25/ 02/ 00) Page 12

85321, Systems Administration Chapter 8: Shell
Programming

What would you expect:
read X << END

would do? What do you think $X would hold if the input was:

Dear Sir

| have no idea why your computer blew up.
Kind regards, me.

END

And now for the hard bits

Scenario

So far we have been dealing with very simple examples — mainly due to the
fact we' ve been dealing with very smple commands. Shell scripting was not
invented so you could write programs that ask you your name then display it.
For this reason, we are going to be developing areal program that has a useful
purpose. We will do this section by section as we examine more shell
programming concepts. While you are reading each section, you should
consider how the information could assist in writing part of the program.

The actual problem isasfollows:

You'’ ve been appointed as a system administrator to an academic department
within a small (anonymous) regional university. The previous system
administrator left in rather a hurry after it was found that department’’s main
server had being playing host to plethora of pornography, warez (pirate
software) and documentation regarding interesting alternative uses for various
farm chemicals.

There is some concern that the previous sys admin wasn’t the only individual
within the department who had been availing themselves to such wonderful
and diverse resources on the Internet. You have been instructed to identify
those persons who have been visiting "undesirable" Internet sites and advise
them of the department’ s policy on accessing inappropriate material
(apparently thereisn’'t one, but you’ ve been advised to improvise). |deally,
you will produce a report of people accessing restricted sites, exactly which
sites and the number of times they visited them.

To assist you, a network monitoring program produces a datafile containing a
list of users and sites they have accessed, an example of which islisted below:

FI LE: netwatch

j am esob nmucus. sl i me. com
tonsl oye xboys. funnet.com fr
tonsl oye sweet . dreans. com
root sniffer.gov.au

j am esob marvin.ls.tc. hk

| am esob never. |l and. nz

| am esob guppy. pond. cqu. edu. au
tonsl oye xboys. funnet . com fr
t onsl oye WWW. sony. com

j anesk hor sel and. or g. uk

David Jones, Bruce Jamieson (25/ 02/ 00) Page 13

85321, Systems Administration

Programming
root www. nasa. gov
t onsl oye war ez. under . gr
t onsl oye nmucus. sl i me. com
root ftp.ns.gov.au
tonsl oye xboys. funnet.com fr
root linx.fare.com
root crackz.city.bnr.au
j anesk snurf.city.gov. au
| am esob nmucus. sl i me. com
] am esob nmucus. sl i me. com

David Jones, Bruce Jamieson (25/ 02/ 00)

Chapter 8: Shell

Page 14

85321, Systems Administration Chapter 8: Shell
Programming

After careful consideration (and many hours of painstaking research) a
steering committee on the department’ s policy on accessing the internet has
produced a list of sites that they have deemed "prohibited” — these sitesare
contained in a data file, an example of which is listed below:

FI LE: netnasti es

nmucus. sl i me. com
xboys. funnet.com fr
war ez. under . gr
crackz.city. bnr.au

It isyour task to develop a shell script that will fulfil these requirements (at
the same time ignoring the privacy, ethics and censorship issues at hand :)

(Oh, it might also be an idea to get Yahoo! to remove the link to your main
server under the /Computers/Software/Hackz/Warez/Stes listing... ;)

If ... then ... maybe?

Shell programming provides the ability to test the exit status from commands
and act on them. One way thisisfacilitated is:

i f command

t hen

f_do ot her comnmands
[

Y ou may aso provide an "aternate” action by using the "if" command in the
following format:

i f command
t hen
do ot her conmands
el se
f_do ot her commands
i

David Jones, Bruce Jamieson (25/ 02/ 00) Page 15

85321, Systems Administration Chapter 8: Shell
Programming

And if you require even more complexity, you can issue the if command as:

i f command
t hen
do ot her conmands
elif anot herconmand
f_do ot her commands
|
To test these structures, you may wish to usethet r ue and f al se UNIX
commands. true awayssets$? toOandf al se sets$? to 1 after

executing.

Remember: i f teststhe exit code of acommand — it isn’t used to compare
values; to do this, you must usethet est command in combination with the
i f structure—t est will be discussed in the next section.

What if you wanted to test the output of two commands? In this case, you can
usetheshell’'s& & and || operators. These are effectively "smart” AND and
OR operators.

The && works asfollows:

conmandl && conmand2
comand2 will only be executed if conmandl succeeds.

The | | worksasfollows:

commandl || conmand2
comand2 will only be executed if commandl fails.
These are sometimes referred to as "short circuit" operatorsin other languages.

Given our problem, one of the first things we should do in our program isto
check if our datafiles exist. How would we do this?

#!/ bi n/ bash

Fl LE: scani t

if I's netwatch & |'s netnasties

t hen

| echo "Found netwatch and netnasties!"”

el se
echo "Can not find one of the data files — exiting"
exit 1

fi

Exercise

Enter the code above and run the program. Notice that the output from
the | s commands (and the errors) appear on the screen — thisisn't a
very good thing. Modify the code so the only output to the screenis
one of the echo messages.

Testing Testing...

Perhaps the most useful command available to shell programsisthet est
command. It isalso the command that causes the most problemsfor first time
shell programmers — the first program they ever writeis usualy
(imaginatively) called t est - they attempt to run it — and nothing happens —

David Jones, Bruce Jamieson (25/ 02/ 00) Page 16

85321, Systems Administration Chapter 8: Shell
Programming

why? (Hint: typewhi ch test,thentypeecho $PATH - why doesthe
system command t est run before the programmer’ s shell script?)

The test command allows you to:
test the length of a string
compare two strings
compare two numbers

§

§

§

§ check on afile'stype
§ check on afile's permissions
§ combine conditions together
t

est actualy comesin two flavours:

test an_expression

and

[an_expression]

They are both the same thing — it’sjust that [is soft-linked to
[usr/ bin/test ;test actualy checksto see what nameit isbeing called
by; if itis[then it expectsa] at the end of the expression.

What do we mean by "expression”? The expression isthe string you want
evaluated. A ssimple example would be:

if ["$1" = "hello"]
t hen

echo "hello to you too!"
el se

iy echo "hell o anyway"
i

Thissimply testsif the first parameter washel | 0. Note that the first line
could have been written as:

if test "$1" = "hello"

Tip: Note that we surrounded the variable $1 in quotes. Thisisto take care of
the case when $1 doesn’t exist — in other words, there were no parameters
passed. If we had simply put $1 and there wasn’t any $1, then an error would
have been displayed:

test: =: unary operator expected

Thisis because you' d be effectively executing:

test NOTHI NG = "hel | 0"

= expects a string to itsleft and right — thus the error. However, when placed
in double quotes, you be executing:

test "" = "hello"
which isfine; you're testing an empty string against another string.
Youcan alsouset est totell if avariable hasavalueinit by:

test S$var

Thiswill return true if the variable has something in it, false if the variable
doesn’t exist OR it contains null ("").

David Jones, Bruce Jamieson (25/ 02/ 00) Page 17

85321, Systems Administration

Programming

Chapter 8: Shell

We could use thisin our program. If the user enters at |east one username to
check on, them we scan for that username, € se we write an error to the screen

and exit:

if [$1]
t hen

the_user_list=echo $*

el se

echo "No users entered - exiting!

exit 2
fi

EXxpressions, expressions!

So far we' ve only examined expressions containing string based comparisons.

The following tableslist al the different types of comparisons you can

perform with thet est command.

Expression Trueif
-z string length of stringisO
-n string length of stringisnot 0

stringl = string2

if the two strings are identical

string !'= string2

if the two strings are NOT identical

String if stringisnot NULL
Table 8.3
String based tests
Expression Trueif

intl —eq int2

firstint isequal to second

intl —ne int2

first int is not equal to second

intl —gt int2

firstint is greater than second

intl —ge int2

firstint is greater than or equal to second

intl =It int2

first int isless than second

intl -le int2

firstint islessthan or equal to second

Table 8.4
Numeric tests

David Jones, Bruce Jamieson (25/ 02/ 00)

Page 18

85321, Systems Administration Chapter 8: Shell

Programming
Expression Trueif
-r file Fi | e existsand isreadable
-wfile file existsandiswritable
-x file file existsand isexecutable
-f file fileexistsandisaregular file
-d file fil e existsandisdirectory
-h file fileexistsandisasymbalic link
-c file fil e existsandisacharacter special file
-b file file existsandisablock special file
-p file file existsand isanamed pipe
-u file fileexistsanditissetuid
-g file fileexistsanditissetgid
-k file file existsand the sticky bit is set
-s file fileexistsanditssizeisgreater than 0
Table 8.5
File tests
Expression Purpose
! reverse the result of an expression
-a AND operator
-0 OR operator
(expr) group an expression, parentheses have special
meaning to the shell so to use them in the test
command you must quote them

Table 8.6
Logic operators with test

Remember: t est usesdifferent operators to compare strings and numbers —
using —ne on astring comparison and ! = on a numeric comparison is
incorrect and will give undesirable results.

Exercise

Modify the code for scani t soitusesthet est command to seeif the

datafiles exists.

All about case

Ok, so we know how to conditionally perform operations based on the return
status of acommand. However, like a combination between thei f statement
andthet est $string = $string2, thereexiststhecase statement.

case value in

pattern 1) conmmand
anot her command ;
pattern 2) conmmand

anot her command ;
esac

David Jones, Bruce Jamieson (25/ 02/ 00) Page 19

85321, Systems Administration Chapter 8: Shell
Programming

case works by comparing value against the listed patterns. If amatchis
made, then the commands associated with that pattern are executed (up to the
" " mark) and $? isset to 0. If amatch isn’t made by the end of the case
statement (esac) then $? isset to 1.

The really useful thing is that wildcards can be used, as can the "[* symbol
which acts as an OR operator. The following example gets a 'Y esNo response
from a user, but will accept anything starting with "Y" or "y" as YES, "N" or
"n" as no and anything else as"MAYBE"

echo —-n "Your Answer:
read ANSWER
case $ANSVER i n
Y* | y*) ANSWER="VYES" ;
N | n*) ANSWER="NO' ;;
*) ANSWER="MAYBE" ; ;
esac
echo $ANSVER

Exercise

Write a shell script that inputs a date and convertsit into along date
form. For example:
$~ > mydate 12/3/97
12th of March 1997

$~ > mydate
Enter thedate: 1/11/74
1st of November 1974

L oops and Repeated Action Commands

Looping — "the exciting process of doing something more than once" — and
shell programming allowsit. There are three constructs that implement
looping:

while — do — done
for — do - done
until - do - done

whi | e

Theformat of thewhi | e construct is:

whi | e command
do

conmands
done

(whilecommand istrue, conmands are executed)

Example

while [$1]
do
echo $1

David Jones, Bruce Jamieson (25/ 02/ 00) Page 20

85321, Systems Administration Chapter 8: Shell
Programming
shi ft
done
What does this segment of code do? Try running a script containing this code

witha b ¢ d e onthecommand line.
whi | e also alows the redirection of input. Consider the following:

#!/ bi n/ bash
FI LE: linelist
#
count =0
whi | e read BUFFER
do
count = expr $count + 1 # I ncrement the count
echo "$count $BUFFER' # Echo it out
done < $1 # Take input fromthe file
This program reads afile line by line and echo’s it to the screen with aline
number.

Given our scani t program, the following could be used read the netwatch
datafile and compare the username with the entries in the datafile:

whi l e read buffer
do

user='echo $buffer | cut -d" " -f1
site="echo $buffer | cut -d" " -f2
i f [n $user n = n $1II]

t hen

echo "$user visited $site"
fi
done < netwatch

Exercise

Modify the above code so that the site is compared with all sitesin the
prohibited sitesfile (net nast i es). Do thisby using another
whi | e loop. If the user has visited a prohibited site, thenecho a
message to the screen.

for

Theformat of thef or construct is:

for variable in list_of variables
do

conmands
done

(for each valuein list_of variables, "commands" are executed)

Example

We saw earlier in this chapter examples of the for command showing the
difference between $* and $@.

Another example

for count in 10 9 8 76 54321
do

echo —-n "$count.."
done

echo
David Jones, Bruce Jamieson (25/02/00) Page 21

85321, Systems Administration Chapter 8: Shell
Programming

Modifying scani t

Given our scani t program, we might wish to report on a number of users.
The following modifications will allow us to accept and process multiple users
from the command line:

for checkuser in $*
do

whil e read buffer
do
ghile read checksite
o}
user='echo $buffer | cut -d" " -f1
site='echo $buffer | cut -d" " -f2° _
if ["$user" = "$checkuser" -a "$site" = "$checksite"]
t hen

echo "$user visited the prohibited site $site"
fi
done < netnasties
done < netwatch
done

Problems with running scanit

A student in the 1999 offering of 85321 reported the following problem with
the scanit program on page 160 of chapter 8 of the 85321 textbook.

When running her program she types

bash scanit jamiesob
and quite contrary to expectations she gets 80 lines of output that includes

root visited the prohibited site crackz.city.bnr. au

root visited the prohibited site crackz.city.bnr. au

janesk visited the prohibited site snmurf.city.gov. au
| anesk visited the prohibited site snmurf.city.gov. au
| anesk visited the prohibited site snmurf.city.gov. au
| anesk visited the prohibited site snmurf.city.gov. au
| am esob visited the prohibited site nucus.sline.com
J am esob visited the prohibited site nucus.sline.com

If everything is working the output you should get is three lines of code
reporting that the user jamiesob has visited the site mucus.slime.com.

So what is the problem?
WEell let’s have alook at her shell program

for checkuser in $*

do
whil e read buffer
do
ghile read checksite
0
user='echo $buffer | cut -d" " -f1'
site='echo $buffer | cut -d" " -f2

if ["$user"="S%checkuser" -a "$site"="3$checksite"

t hen
echo "$user visited the prohibited site $site"
fi

done < netnasties
done < netwatch
done

David Jones, Bruce Jamieson (25/ 02/ 00) Page 22

85321, Systems Administration Chapter 8: Shell
Programming

Can you see the problem?

How do we identify the problem? Well let’s start by thinking about what the
problem is. The problem isthat it is showing too many lines. The script is not
excluding lines which should not be displayed. Where are the lines displayed?

The only place iswithin the if command. This seemsto imply that the problem
isthat the if command isn't working. It is matching too many times, in fact it
ismatching all of the lines.

The problem isthat if command iswrong or not working as expected.
How isit wrong?
Common mistakes with the if command include

* not using the test command
Some people try comparing "things' without using the test command
if "$user"="$checkuser" —a"$site"="$checksite"
The student is using the test command in our example. In fact, sheis
using the [form of the test command. So thisisn’t the problem.

* using the wrong comparison operator
Some people try things like
if ["$user" == "$checkuser"] or
if ["$user" —eq "$checkuser" |
Trouble with thisis that == is comparison operator from the C/C++
programming languages and not a comparison operator supported by
the test command. —eq is a comparison operator supported by test but it
is used to compare numbers not strings. Thisisn’t the problem here.

The problem here is some missing spaces around the = signs.

Remember that [is actually a shell command (it’ s the same command test).
Like other commands it takes parameters. Let’s have alook at the parameters
that the test command takes in this example program.

The test command is

["Suser"="$checkuser" -a "$site"="$checksite"]
Parameters must be surrounded by spaces. So this command has four
parameters (thefirst [is the command name)

1. "$user " ="$checkuser™"

2. —a
3. "$site"="%$checksite"
4.1

By now you might start to see the problem. For the test command to actual
compare two "things' it needs to see the = as a separate parameter. The
problem is that because there are no spaces around the = charactersin thistest
command the = isnever seen. It’sjust part of a string.

The solution to this problem is to put some space characters around the two =.
So we get
["$user"” = "$checkuser" -a "$site" = "$checksite"]

So what is happening

So what is actually happening? Why is the test always returning true. We
know this because the script displays aline for al the users and all the sites.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 23

0

1

0

1

85321, Systems Administration Chapter 8: Shell
Programming

To find the solution to this problem we need to take alook at the manual page
for the test command. On current Linux computers you can type man test and
you will see amanual page for this command. However, it isn’t the one you
should look at.

Type the following command which test. It should tell you where the
executable program for test is located. Trouble isthat on current Linux
computers it won't. That’s because there isn’t one. Instead the test command is
actually provided by the shell, in this case bash. To find out about the test
command you need to look at the man page for bash.

The other approach would be to look at Table 8.3 from chapter 8 of the 85321
textbook. In particular the last entry which saysthat if the expression in atest
command is a string then the test command will return trueif the string is
non-zero (i.e. it has some characters).

Here are some examples to show what this actually means.

In these examples I’ m using the test command by itself and then using the
echo command to have alook at the value of the $? shell variable. The $? shell
variable holds the return status of the previous command.

For the test command if the return statusis O then the expression was true. If it
is 1 then the expression asfalse.

[david@aile 8]$ [fred]

[david@aile 8]% echo $?

[david@aile 8]$ []

[david@aile 8]% echo $?

[david@aile 8]$ ["jam esob"="nucus. slinme.con']

[david@aile 8]% echo $?

[david@aile 8]$ ["jam esob” = "mnucus. slinme.conl]
[david@aile 8]% echo $?

In the first example the expression is fred a string with a non—zero length. So
the return statusis O indicating true. In the second example thereisno
expression, so it isastring with zero length. So the return statusis 1 indicating
false.

The last two examples are similar to the problem and solution in the student’s
program. The third exampleis similar to the students problem. The parameter
isasingle non—zero length string ("jamiesob"="mucus.dime.com™") so the
return status is O indicating truth.

When we add the spaces around the = we finally get what we wanted. The test
command actually compares the two strings and sets the return status
accordingly and because the strings are different the return status is 1
indicating false.

So what about the —a operator used in the student’ s program. Well the —a
simply takes the results of two expressions (one on either side) and ands them
together. In the student’ s script there the two expressions are non—zero length
strings. Which are always true. So that becomes 0 —a 0 (TRUE and TRUE)
which isawaystrue.

Here are some more examples

David Jones, Bruce Jamieson (25/ 02/ 00) Page 24

85321, Systems Administration Chapter 8: Shell
Programming
[david@aile 8]% ["jam esob"="mnucus. sline.con -a
"david"="fred"]
[david@aile 8]% echo $?
0

[david@aile 8]% ["jam esob"="nucus.sline.coni -a ""]

[david@aile 8]% echo $?

1

[david@aile 8]3% ["jam esob"” = "nucus.sline.conl -a
"david" = "david"]

[david@aile 8]% echo $?

1

[david@aile 8]$% ["jam esob" = "jam esob" -a "david" =
"david"]

[david@aile 8]% echo $?
0

Thefirst example here iswhat is happening in the student’ s program. Two
non-zero length strings, which are always true, "anded" together will always
return true regardless of the strings.

The second example shows what happens when one side of the —aisazero
length string. A zero length string is dways false, false and true is aways
false, so this example has areturn status of 1 indicating false.

The last two examples show "working" versions of the test command with
spacesin al the right places. Where the two strings being compared are
different the comparison is false and the test command is returning false.
Where the two strings being compared are the same the comparison operator is
returning true and the test command is returning true.

Exercises

What will be the return status of the following t est commands? Why?
["hello"]

[$HOME]

[LLINY hel I O‘ n]

The above code is very inefficient IO wise — for every entry in thenet wat ch
file, theentirenet nast i es fileisread in. Modify the code so that the while

loop reading the netnasties file is replaced by afor loop. (Hint: what does:
BADS| TES=' cat netnasti es’

do?)

EXTENSION: What other 10 inefficiencies does the code have? Fix them.

Speed and shdll scripts

Exercise 8.11 isactually avery important problem in that it highlights a
common mistake made by many novice shell programmers. Thismistakeis
especially prevalent amongst people who have experience in an existing
programming language like C/C++ or Pascal.

This supplementary material isintended to address that problem and hopefully
make it alittle easier for you to answer question 11. Online lecture 8,

David Jones, Bruce Jamieson (25/ 02/ 00) Page 25

85321, Systems Administration Chapter 8: Shell
Programming

particularly on dide 21 also addresses this problem. Y ou might want to have a
look at and listen to this slide before going much further.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 26

85321, Systems Administration Chapter 8: Shell
Programming

What'sthe mistake

A common mistake for beginning shell programmers make isto write shell
programs asif they were C/C++ programs. In particular they tend not to make
use of the collection of very good commands which are available.

Let’stake alook at a simple example of what | mean. The problem isto count
the number of linesin afile (thefileiscalled the file). The following section
discusses three solutions to this problem

1. A solutionin C
2. A shdll solution written like the C program.
3. A "proper" shell/lUNIX solution

Solutionin C

#i ncl ude <stdio. h>
void main(void)
int Iine_count = 0;
FILE *infile;
char 1ine[500];
infile = fopen("the_file", "r");
while (! feof(infile))

fgets(line, 500, infile);
[1 ne_count ++;

} printf("Nunber of lines is %d\n", line_count-1);
Pretty smple to understand? Open the file, read the file line by line, increment
avariable for each line and then display the variable when we reach the end of
thefile.
Shell solution written by C programmer
It iscommon for new comersto the shell to write shell scriptslike C (or
whatever procedural language they are familiar with) programs. Here'sa
shell version of the previous C solution. It uses the same algorithm.

count =0

while read line

do

count = expr $count + 1
done < the_file

echo Nunber of lines is $count

This shell script reads the file line by line, increment a variable for each line
and when we reach the end of the file display the value.

Shell solution by shell programmer

Anyone with a modicum of UNIX experience will know that you don’t need
to write a shell program to solve this problem. Y ou just use the wc command.

we _Dlavic;[JDHSSWJTJC‘! Jgnieson (25/ 02/ 00) Page 27

This may appear to be afairly trivial example. However, it does emphasise a
very important point. You don’t want to use the shell commands like a
normal procedural programming language. Y ou want to make use of the
available UNIX commands where ever possible.

Comparing the solutions

Let’s compare the solutions.

The C program is obviously the longest solution when it comes to size of the
program. The shell script is much shorter. The shell takes care of alot of tasks
you have to do with C and the use of wc is by far the shortest. The UNIX
solutions are also much faster to write as there is no need for a compile/test
cycle. Thisisone of the advantages of scripting languages like the shell, Perl
and TCL.

What about speed of execution?

Aswe ve seenin earlier chapters you can test the speed of executable
programs (in avery coarse way) with the time command. The following
shows the time taken for each solution. In the tests each of the three solutions
worked on the same file which contained 1911 lines.

[david@aile david]$ time ./cprogram

Nunber of lines is 1911

0. OOuser 0.01system 0: 00. 0lel apsed 83%CPU (Oavgt ext +Oavgdat a
Omaxresi dent) k

Oi nput s+0out puts (79ngj or +11mi nor) pagef aul ts Oswaps

[david@aile david]$ tinme sh shsol ution

Nunber of lines is 1911

12. 24user 14.17system 0: 28. 12el apsed 93%CPU (Oavgt ext +Oavgdat a
Omaxr esi dent) k

Oi nput s+0out puts (164520nmaj or +109070m nor) pagef aul ts Oswaps

[david@aile david]$ time wec -I /var/l og/ nessages

1911 /var/ 1 og/ nessages
0. OOuser 0.01system 0: 00. 04el apsed 23%CPU (Oavgt ext +Oavgdat a
Omaxresi dent) k

Oi nput s+0out put s (85nmj or +14mi nor) pagef aul ts Oswaps

The lesson to draw from these figuresis that solutions using the C program
and the wc command have the same efficiency but using the we command is
much quicker.

The shell programming solution which was written like a C program is
horrendoudly inefficient. It is tens of thousands of times slower than the other
two solutions and uses an enormous amount of resources.

The problem

Obvioudly using while loopsto read afile line by linein ashell program is
inefficient and should be avoided. However, if you think like a C programmer
you don’'t know any different.

When writing shell programs you need to modify how you program to make
use of the strengths and avoid the weaknesses of shell scripting. Where
possible you should use existing UNIX commands.

A solution for scanit?

Just because the current implementation of scanit uses two while loops it

doesn’t mean that your solution hasto. Think about the problem you have to
solve.

In the case of improving the efficiency of scanit you have to do the following
+ for every user entered as acommand line parameter
+ seeif the user hasvisited one of the sites listed in the netnasties file

To word it another way, you are searching for linesin afile which match a
certain criteria. What UNIX command does that?

Number of processes

Another factor to keep in mind is the number of processes your shell script
creates. Every UNIX command in a shell script will create a new process.
Creating a new process is quite a time and resource consuming job performed
by the operating system. One thing you want to do isto reduce the number of
new processes created.

Let’stake alook at the shell program solution to our problem

count =0
while read Iine
do
count = expr $count + 1
done < the_file

echo Nunber of lines is $count

For afile with 1911 lines this shell program is going to create about 1913
processes. 1 process for the echo command at the end, one processto for a
new shell to run the script and 1911 processes for the expr command. Every
time the script reads aline it will create a new process to run the expr
command. So the longer the file the less efficient this script is going to get.

One way to address this problem somewhat is to use the support that the bash
shell provides for arithmetic. By using the shell’ s arithmetic functions we can
avoid creating a new process because the shell process will doit.

Our new shell script looks like this

count =0
while read |ine
do
count=$[$count + 1]
done < /var/ |l og/ messages

echo Nunber of lines is $count

See the change in the line incrementing the count variable. It's now using the
shell arithmetic support. Look what happens to the speed of execution.

[david@aile 8]$% time bash test6

Nunber of lines is 1915

1. 28user 0.52system 0: 01. 83el apsed 98%CPU (Oavgt ext +Oavgdat a
Onmaxresi dent) k

Oi nput s+0out puts (179mmj or +30m nor) pagef aul ts Oswaps

We have a dlightly bigger file but even so the speed is much, much better.

However, the speed is still no where as good as smply using the wc
command.

85321, Systems Administration Chapter 8: Shell
Programming

until

Theformat of theunt i | construct is:

until command
do

conmands
done

("commands' are executed until "command" is true)

Example

until ["$1" =""]
do

echo $1

shift
done

break and cont i nue

Occasionally you will want to jump out of aloop; to do thisyou need to use
thebr eak command. br eak isexecuted in the form:

br eak

or

break n

Thefirst form ssimply stops the loop, for example:

whil e true
do
read BUFFER
if ["$BUFFER' = ""]
t hen
f_break
i
echo $BUFFER
done

This code takes a line from the user and prints it until the user enters a blank
line. The second form of br eak, br eak n (wheren isanumber)
effectively works by executing br eak "n" times. This can break you out of
embedded |oops, for example:

for file in $*
do
whi | e read BUFFER
do
if ["$BUFFER' = "ABORT"]
t hen
break 2
fi
echo $BUFFER
done < $file
done

This code prints the contents of multiple files, but if it encountersaline
containing the word "ABORT" in any one of thefiles, it stops processing.

Likebr eak, cont i nue isused to ater the looping process. However,
unlike br eak, cont i nue keepsthe looping process going; it just failsto

David Jones, Bruce Jamieson (25/ 02/ 00) Page 28

85321, Systems Administration Chapter 8: Shell
Programming

finish the remainder of the current loop by returning to the top of the loop. For
example:

whi | e read BUFFER
do
charcount = echo $BUFFER | wc -c | cut -f1°
if [$charcount -gt 80]
t hen
f_continue
i
echo $BUFFER
done < $1

This code segment reads and echo’ s the contents of afile — however, it does
not print lines that are over 80 characters long.

Redirection

Not just thewhi | e —do — done loops can have IO redirection; it is possible
to perform piping, output to files and input from filesoni f,f or andunti |
aswell. For example:

if true

t hen
read x
read y
read x

fi <afile

This code will read the first three linesfrom af i | e. Pipescan aso be used:

read BUFFER
\évhi le ["$BUFFER' != ""]
(0}
echo $BUFFER
read BUFFER
done | todos > tnp. $%
This code uses a non—standard command called t odos. t odos converts
UNIX text filesto DOS textfiles by making the EOL (End-Of-Line) character
equivaent to CR (Carriage—Return) LF (Line-Feed). This code takes STDIN
(until the user enters ablank line) and pipes it into todos, which in turn
convertsitto aDOS styletext file(t np. $$) . Inall, atotally useless
program, but it does demonstrate the possibilities of piping.

Now for thereally hard bits

Functional Functions

A symptom of most usable programming languages is the existence of
functions. Theoretically, functions provide the ability to break your code into
reusable, logical compartments that are the by product of top—down design. In
practice, they vastly improve the readability of shell programs, making it
easier to modify and debug them.

An dternative to functions is the grouping of code into separate shell scripts
and calling these from your program. Thisisn't as efficient as functions, as
functions are executed in the same process that they were called from;

however other shell programs are launched in a separate process space — thisis
inefficient on memory and CPU resources.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 29

85321, Systems Administration Chapter 8: Shell
Programming

Y ou may have noticed that our scani t program has grown to around 30
lines of code. Whilethisis quite manageable, we will make some major
changes later that really require the "modular” approach of functions.

Shdll functions are declared as:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 30

85321, Systems Administration Chapter 8: Shell

Programming

function_nane()

soneconmands

Functions are called by:

function_nane paraneter |i st

YES! Shell functions support parameters. $1 to $9 represent the first nine
parameters passed to the function and $* represents the entire parameter list.
The value of $0 isn’t changed. For example:

#! / bi n/ bash
Fl LE: catfil es

catfil e()
for file in $*
do

cat $file
done

FI LELI ST=1s $1°
cd $1
catfile $FI LELI ST

Thisisahighly useless example (cat * would do the same thing) but you
can see how the "main” program calls the function.

| ocal

Shell functions also support the concept of declaring "local” variables. The
| ocal command isused to do this. For example:

#!/ bi n/ bash

testvars()
| ocal | ocal X="testvars |ocal X"
X="testvars X'

| ocal d obal X="testvars d obal X"
echo "testvars: |ocal X= $l ocal X X= $X d obal X= $d obal X"

X="Main X"

d obal X="Mai n GLobal X"

echo "Main 1: |ocal X= $l ocal X X= $X d obal X= $d obal X"
testvars

echo "Main 2: local X= $l ocal X X= $X d obal X= $d obal X"

The output looks like:

Main 1: local X= X= Main X d obal X= Main GLobal X
testvars: local X= testvars local X X= testvars X d obal X= testvars d obal X
Main 2: local X= X= testvars X d obal X= Main GLobal X

Thereturntrip

After calling ashell function, the value of $7? is set to the exit status of the last
command executed in the shell script. 1f you want to explicitly set this, you
can usether et ur n command:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 31

85321, Systems Administration
Programming

return n
(Where n isanumber)

This alowsfor code like:

if functionl

Chapter 8: Shell

t hen
do_this
el se
do_t hat
fi
For example, we can introduce our first function into our scani t program by
placing our datafile tests into afunction:
#!/ bi n/ bash
FI LE: scanit
#

check data files()

if [-r netwatch —-a -r netnasties]
t hen
return O
el se
f_return 1
i

}
Main Program

if check_data_files

t hen
echo "Datafiles found"

el se
echo "One of the datafiles missing — exiting"
exit 1

fi

our other work...

Difficult and not compulsory

The following section (up to the section titled "Bugs and Debugging”) is not

compulsory for students studying 85321.

Recursion: (see" Recursion™)

Shell programming even supports recursion. Typically, recursion is used to
process tree—like data structures — the following example illustrates this:

#!/ bi n/ bash
FI LE: wctree
wefil es()
| ocal BASEDI R=%1 # Set the |ocal base directory
| ocal LOCALDI R=" pwd' # Were are we?
cd $BASEDI R # Go to this directory (down)
local filelist="1s' # CGet the files in this directory
for file in $filelist
do
if [-d $file] # 1f we are a directory, recurs
t hen
we are a directory
wefiles "$BASEDI R/ $file"
el se
fc=we -w< $file # do word count and echo info

David Jones, Bruce Jamieson (25/ 02/ 00)

Page 32

85321, Systems Administration Chapter 8: Shell
Programming
. echo "$BASEDI R/ $file $fc words"
i
done
cd $LOCALDI R # Go back up to the calling directory

if [$1] # Default to . if no parms

David Jones, Bruce Jamieson (25/ 02/ 00) Page 33

85321, Systems Administration Chapter 8: Shell
Programming

Exercise

What doesthewct r ee program do? Why are certain variables
declared as| ocal ? What would happen if they were not? Modify
the program so it will only "recurs® 3 times.

EXTENSION: Thereisactualy a UNIX command that will do the
same thing as this shell script — what isit? What would be the
command line? (Hint: man fi nd)

wai t’'ingandtrap’ing

So far we have only examined linear, single process shell script examples.
What if you want to have more than one action occurring at once? Asyou are
aware, it is possible to launch programs to run in the background by placing an
ampersand behind the command, for example:

runcommand &

You can aso do thisin your shell programs. It isoccasionally useful to send a
time consuming task to the background and proceed with your processing. An
example of thiswould be asort on alargefile:

sort $largefile > $newfile &

do_a function

do_another _funtion $newfile
The problem is, what if the sort hadn’t finished by the time you wanted to use
$newfile? The shell handlesthis by providingwai t :

sort $largefile > $newfile &

do_a_function

wal t

do_anot her _funtion $newfile
When wai t isencountered, processing stops and "waits" until the child
process returns, then proceeds on with the program. But what if you had
launched severa processes in the background? The shell provides the shell
variable $! (the PID of the child process launched) which can be given as a
parameter to wait — effectively saying "wait for thisPID". For example:

sort $largefilel > $newfilel &

$Sor t Pl D1=%!
sort $largefile2 > $newfile2 &
$Sor t Pl D2=%!
sort $largefile3 > $newfile3 &
$Sor t Pl D3=%!

do_a function

wait $Sort Pl D1

do_another _funtion $newfilel
wait $Sort Pl D2

do_another _funtion $newfile2
wait $Sort Pl D3

do_anot her _funtion $newfile3

Another useful command ist r ap. trap works by associating a set of
commands with a signal from the operating system. Y ou will probably be
familiar with:

kill -9 PID
David Jones, Bruce Jamieson (25/ 02/ 00) Page34

trap

trap

trap

trap nn

85321, Systems Administration Chapter 8: Shell
Programming

which isused to kill aprocess. Thiscommand isin fact sending the signal "9"
to the process given by PID. Available signals are shown in Table 8.7.

Signal Meaning
0 Exit from the shell
1 Hangup
2 I nterrupt
3 Quit
4 Illegal Instruction
5 Trace trap
6 |OT instruction
7 EMT instruction
8 Floating point exception
10 Bus error
12 Bad argument
13 Pipe write error
14 Alarm
15 Software termination signal

Table 8.7
UNI X signals

(Taken from "UNIX Shell Programming” Kochan et a)

While you can't actually trap signal 9, you can trap the others. Thisis useful
in shell programs when you want to make sure your program exits gracefully
in the event of a shutdown (or some such event) (often you will want to
remove temporary files the program has created). The syntax of usingt r ap
is

conmands signal s

For example:

"rm/tnp/tenp. $$" 1 2

will trap signals 1 and 2 — whenever these signals occur, processing will be
suspended and ther m command will be executed.

You can aso list every trap’ed signal by issuing the command:

To "un—trap" asignal, you must issue the command:

signal s

The following is a somewhat clumsy form of IPC (Inter—Process
Communication) that reliesont rap and wai t :

#!/ bi n/ bash
FI LE: saynsg

USAGE: saynsg <create nunber of children> [total nunber of

#

chi I dren]

readnsg()

{

read line < $$ # read a line fromthe file given by the PID

David Jones, Bruce Jamieson (25/ 02/ 00) Page 35

85321, Systems Administration Chapter 8: Shell

Programming
echo "$ID - got $line!" # of my *this* process ($%)
if [$SCHLD]
t hen
witensg $line # if | have children, send them nessage
fi
}
writensg()
{
echo $* > $CH LD # Wite line to the file given by PID
kill -1 $CH LD # of ny child. Then signal the child.
}
stop()
{
kill -15 $CH LD # tell my child to stop
if [$SCHLD]
t hen
wait $CHI LD # wait until they are dead
rm $CHI LD # renove the nessage file
fi
exit O
}

Main Program

if [$# —-eq 1]
t hen
NUMCHI LD=* expr $1 - 1°
saynsg SNUMCHI LD $1 & # Launch another child

CH LD=%!

| D=0

touch $CHI LD # Create enpty nessage file

echo "I amthe parent and have child $CH LD"

el se

if [$1 -ne 0] # Must | create children?

t hen
NUMCHI LD=* expr $1 - 1 # Yep, deduct one fromthe nunber
saynsg $SNUMCHI LD $2 & # to be created, then launch them
CH LD=%!
| D= expr $2 - $1
touch $CHI LD # Create enpty nmessage file
echo "I am $I D and have child $CH LD

el se
| D= expr $2 - $1' # 1 don't need to create children
echo "I am $ID and amthe last child"

David Jones, Bruce Jamieson (25/ 02/ 00) Page 36

85321, Systems Administration Chapter 8: Shell

Programming

fi

fi

trap "readnmsg" 1 # Trap the read signa

trap "stop" 15 # Trap the drop-dead signa

if [$# -eq 1] # 1f | have one paraneter

t hen # then | amthe parent - | just read
read BUFFER # STDI N and pass the nessage on
while ["$BUFFER']

do
witemsg $BUFFER
read BUFFER
done
echo "Parent - Stopping"

st op
el se # Else | amthe child who does nothing -
while true # 1 amtotally driven by signals.
do
true
done

fi

So what is happening here? It may help if you look at the outpult:

psyche: ~/ sanot es[davi d@ai | e david]$ saynsg 3
| amthe parent and have child 8090

I am 1 and have child 8094

I am 2 and have child 8109

I am 3 and amthe last child

this is the first thing I type

1

- got this is the first thing |I type!
2 —got this is the first thing | typel
3 —got this is the first thing | typel

Parent - Stopping
psyche: ~/ sanot es[davi d@ai | e david] $

Initially, the parent program starts, accepting a number of children to creste.
The parent then launches another program, passing it the remaining number of
children to create and the total number of children. This happens on every
launch of the program until there are no more children to launch.

From this point onwards the program works rather like Chinese whispers — the
parent accepts a string from the user which it then passes to its child by
sending asignal to the child — the signal is caught by the child and r eadnsg
isexecuted. The child writes the message to the screen, then passes the
message to its child (if it has one) by signalling it and so on and so on. The
messages are passed by being written to files — the parent writes the message
into afile named by the PID of the child process.

When the user enters a blank line, the parent process sends asignal to its child
- the signa is caught by the child and st op isexecuted. The child then sends
amessage to its child to stop, and so on and so on down the line. The parent
process can't exit until all the children have exited.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 37

85321, Systems Administration Chapter 8: Shell
Programming

Thisisavery contrived example — but it does show how processes (even at a
shell programming level) can communicate. 1t also demonstrates how you can
give afunction nameto tr ap (instead of acommand set).

Exercise

saynsg isriddled with problems — there isn’t any checking on the
parent process command line parameters (what if there wasn't any?)
and it isn't very well commented or written — make modifications to
fix these problems. What other problems can you see?

EXTENSION: Fundamentally saynsg isn’t implementing very
safe inter—process communication — how could this be fixed?
Remember, one of the main problems concerning IPC isthe race
condition — could this happen?

Bugs and Debugging

If by now you have typed every example program in, completed every
exercise and have not encountered one single error then you are atruly
amazing person. However, if you are like me, you would have made at least
70 billion mistakes typos or TSE’s (totally stupid errors) — and now | tell you
the easy way to find them!

Method 1 — set

I ssuing the truly inspired command of:
set —X

within your program will do wonderful things. Asyour program executes,
each code line will be printed to the screen — that way you can find your
mistakes, err, well, alittle bit quicker. Turning tracing off isagood idea once
your program works — thisis done by:

set +x

Method 2 —

David Jones, Bruce Jamieson (25/ 02/ 00) Page 38

85321, Systems Administration Chapter 8: Shell
Programming

echo

Placing afew echo statementsin your code during your debugging is one of
the easiest waysto find errors — for the most part thiswill be the quickest way
of detecting if variables are being set correctly.

Very Common Mistakes

$VAR=' | s

This should be VAR=" | s* . When setting the value of a shell variable you
don’t usethe $ sign.

read $BUFFER
The same thing here. When setting the value of a variable you don’t use the $
sign.

VAR='|s -al"
Thesecond * ismissing

if [$VAR]

t hen

. echo $VAR

|

Haven't specified what is being tested here. Need to refer to the contents of
Tables 8.2 through 8.5

if [$VAR —eq $VAR2]
t hen
. echo $VAR

i

If $VAR and $VAR2 are strings then you can’'t use —eq to compare their
values. You need to use =.

if [$VAR = $VAR2] then
f_echo $VAR
i

Thet hen must be on a separate line.

And now for thereally really hard bits

Writing good shell programs

We have covered most of the theory involved with shell programming, but
there ismore to shell programming than syntax. In this section, we will
completethescani t program, examining efficiency and structure
considerations.

scani t currently consists of one chunk of code with one small function. In
its current form, it doesn’t meet the requirements specified:

" ...you will produce a report of people accessing restricted sites,
exactly which sites and the number of timesthey visited them.”

Our code, asit is, looks like:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 39

85321, Systems Administration Chapter 8: Shell

Programming
#! / bi n/ bash
Fl LE: scanit

#
check data files()

if [-r netwatch —a -r netnasties]
t hen
return 0
el se
return 1
fi

}
Main Program

if check_data_files

t hen
echo "Datafil es found"

el se
echo "One of the datafiles missing — exiting"
exit 1

fi
for checkuser in $*

0]
whi l e read buffer

do
ghile read checksite
o}
user='echo $buffer | cut -d" " -f1
site='echo $buffer | cut -d" " -f2° _
if ["$user" = "$checkuser" -a "$site" = "$checksite"]
t hen

echo "$user visited the prohibited site $site"
fi
done < netnasties
done < netwatch
done

At the moment, we simply print out the user and site combination — no count
provided. To bereally effective, we should parse the file containing the
user/site combinations (net wat ch), register and user/prohibited site
combinations and then when we have all the combinations and count per
combination, produce areport. Given our datafile checking function, the
pseudo code might look like:

if data_files_exist
el se

exit 1
fi

check_netwatch_file
produce_report

exit
It might also be anideato build in a"default" — if no username(s) are given on
the command line, we go and get al the usersfrom the/ et ¢/ passwd file:
f [$1]
t hen
t he_user _|i st =$*

el se
get passwd_users
fi

Exercise

David Jones, Bruce Jamieson (25/ 02/ 00) Page 40

85321, Systems Administration Chapter 8: Shell
Programming

Write the shell functionget _passwd_user s. Thisfunction goes
through the/ et ¢/ passwd file and creates alist of usernames.
(Hint: username isfield one of the password file, the delimiter is™: ")

eval thewonderful!

Theuse of eval is perhaps one of the more difficult concepts in shell
programming to grasp istheuse of eval . eval effectively says“parse (or
execute) the following twice”. What this meansis that any shell variables that
appear in the string are “substituted” with their real value on the first parse,
then used as—they—are for the second parse.

The use of thisisdifficult to explain without an example, so we'll refer back to
our case study problem.

Therea challengeto this program is how to actually store a count of the user
and site combination. Thefollowingishow I’d do it:

checkfile()

{

Goes through the netwatch file and saves user/site
conbinations involving sites that are in the "restricted"
1ist

whi l e read buffer

do
user nane=' echo $buffer | cut -d" " -f1 # Cet the usernane
Renove “.”"'s fromthe string
site="echo $buffer | cut -d" " -f2 | sed s/\\\.//g'
for checksite in $badsites
do

checksite="echo $checksite | sed s/\\\.//¢
Do this for the conpare sites
if ["$site" = "$checksite"]
t hen
user si t e="3$user nane$checksite"
Does the VARI ABLE called $usersite exist? Note use of eval
if eval [\$Pusersite]
t hen
eval S$usersite=\‘expr \$Susersite + 1\°
el se
eval $usersite=1
fi
fi
done
done < netwatch

There are only two really tricky linesin this function:

1. site='echo $buffer | cut -d" " -f2 | sed s/\\\.//g'
David Jones, Bruce Jamieson (25/ 02/ 00) Page 41

85321, Systems Administration Chapter 8: Shell
Programming

Createsavariable si t e; if buffer (oneline of netwatch) contained

rabi d. dog. com

then si t e would become:

r abi ddogcom

Thereason for thisis because of the variableuser si t e:

user si t e="$user nane$checksit e"

What we are actually creating is a variable name, stored in the variable usersite
—why (you still ask) did we removethe"."”s? This becomes clearer when we
examine the second tricky line:

2. eval S$usersite=\‘expr \$Susersite + 1\°

Remember eval "double" or "pre" parses aline — after eval has been run, you
get aline which looks something like:

$user="j ani esobr abi ddogcont

j am esobr abi ddogconF’ expr $j am esobr abi ddogcom + 1
What should become clearer is this: the function reads each line of the
net wat ch file. If thesiteinthenet wat ch file matches one of the sites
stored innet nast i es file (which has been cat’ ed into the variable
badsi t es) then we store the user/site combination. We do this by first
checking if there exists a variable by the name of the user/site combination — if
one does exist, we add 1 to the value stored in the variable. If therewasn’t a
variable with the name of the user/site combination, then we create one by
assigningitto"1".
At the end of the function, we should have variablesin memory for all the
user/prohibited site combinations found in the netwatch file, something like:

j am esobmucussl i mecon=3

t onsl oyenucussl i neconmel

t onsl oyeboysf unnet confr =3
t onsl oyewar ezunder gr =1

r oot war zunder gr =4

Note that this would be the case even if we were only interested in the users
root andj am esob. Sowhy didn’t we check in the function if the user in

the netwatch file was one of the users we were interested in? Why should
wel? All that doesis adds an extra loop:

for every line in the file
for every site
for every user
do check
create variable if user and if site in userlist,
badsi tel i st

whereas all we have now is

for every line in the file
for every site _ _ _ _ _
create variable if site in badsitelist

We are till going to have to go through every user/badsite combination
anyway when we produce the report — why add the extra complexity?

Y ou might also note that thereis minimal file 10 — datafiles are only read
ONCE - lists (memory structures) may be read more than once.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 42

85321, Systems Administration Chapter 8: Shell
Programming

Exercise

Given the checksi t e function, write afunction called
produce_report that acceptsalist of usernames and finds all
user/badsite combinations stored by checkf i | e. Thisfunction
should echo linesthat look something like:

j am esob: nucus.slime.com 3
tonsl oye: rmucus.sline.com1
tonsl oye: xboys.funnet.comfr 3
tonsl oye: warez.under.gr 1

Step—-by-step

In this section, we will examine a complex shell programming problem and
work our way through the solution.

The problem

This problem is an adaptation of the problem used in the 1997 shell
programming assignment for systems administration:

Problem Definition

Y our department’’s FTP server provides anonymous FTP accessto the/ pub
area of the filesystem — this area contains subdirectories (given by unit code)
which contain resource materials for the various subjects offered. Y ou suspect
that this service isn’t being used any more with the advent of the WWW,
however, before you close this service and use the file space for something
more useful, you need to prove this.

What you require is a program that will parse the FTP logfile and produce
usage statistics on a given subject. This should include:

§ Number of accesses per user
§ Number of bytestransferred
§ Thenumber of machineswhich have used the area

The program will probably be called from other scripts. It should accept
(from the command line) the subject (given by the subject code) that it isto
examine, followed by one or more commands. Valid commands will consist
of:

§ USERS - get auser and access count listing
§ BYTES - bytestransmitted for the subject
§ HOSTS - number of unigue machines who have used the area

Background information

A cut down version of the FTP log will be examined by our program — it will
consist of:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 43

85321, Systems Administration Chapter 8: Shell
Programming

renot e host nane

file size in bytes

nane of file

| ocal usernane or, if guest, ID string given (anonynous FTP passwor d)

For example:

aardvark.com 2345 / pub/ 85349/ | ectures. tar. gz MQ%@W
138.77.8.8 112 / pub/ 81120/ cpu. gi f sl ot h@ opaz. cqu. edu. au
The FTP logfilewill becalled/ var /| og/ ft p. | og — we need not concern

ourselves how it is produced (for those that are interested — ook at man
f t pd for adescription of thereal log file).

Anonymous FTP “usernames’ are recorded as whatever the user typesin asthe
password — while this may not be accurate, it is al we have to go on.

We can assume that all directories containing subject material branch off the
/ pub directory, eg.

/ pub/ 85321
/ pub/ 81120

Expected interaction

The following are examples of interaction with the program (scanl og):

[davi d@ai |l e david]$ scanl og 85321 USERS
j am esob@ asper. cqu. edu. au 1

b. spi ce@wor | d. cqu. edu. au 22

j onesd 56

[davi d@ai |l e david]$ scanl og 85321 BYTES
2322323

[david@ail e david]$ scanl og 85321 HOSTS

5

[david@ail e david]$ scanl og 85321 BYTES USERS
2322323

j am esob@ asper. cqu. edu. au 1

b. spi ce@wor | d. cqu. edu. au 22
j onesd 56

Solving the problem

David Jones, Bruce Jamieson (25/ 02/ 00) Page 44

85321, Systems Administration Chapter 8: Shell
Programming

How would you solve this problem? What would you do first?

Break it up

What does the program have to do? What areits major parts? Let'slook at
the functionality again — our program must:

§ get auser and access count listing

§ produce athe byte count on files transmitted for the subject

§ list the number unique machines who have used the area and how many
times

To do this, our program must first:

§ Read parameters from the command line, picking out the subject we are
interested in

§ go through the other parameters one by one, acting on each one, calling the
appropriate function

§ Terminate/clean up
So, thislooks like a program containing three functions. Or isit?

Look at the simple casefirst

It is often easier to break down a problem by walking through a simple case
first.

L ets imagine that we want to get information about a subject — let’’s use the
code 85321. At thisstage, wereally don’t care what the action is. What
happens?

The program starts.

§ Weextract thefirst parameter from the command line. Thisis our subject.
We might want to check if thereisafirst parameter — isit blank?

§ Sincewe areonly interested in this subject, we might want to go through
the FTP log file and extract those entries we' re interested in and keep this
information in atemporary file. Our other option isto do thisfor every
different “action” — thiswould probably be inefficient.

§ Now, we want to go through the remaining parameters on the command
line and act on each one. Maybe we should signal aerror if we don't
understand the action?

§ At theend of our program, we should remove any temporary files we use.

Pseudo Code

If we were to pseudo code the above steps, we' d get something like:

Check to see if the first paraneter is blank
if first_paranmeter = ""
t hen
echo "No unit specified"
f_exit
i

David Jones, Bruce Jamieson (25/ 02/ 00) Page 45

85321, Systems Administration Chapter 8: Shell
Programming

Find all the entries we're interested in, place this in a TEMPFI LE
Right — for every other paranmeter on the conmand |ine, we perform
some

for ACTION in other_paraneters
do

Decide if it is a valid action — act on it or give a error
done

Renove Tenp file
rm TEMPFI LE

Let’s code this:
i f [n $1II = nn]
t hen
echo "No unit specified"
f_exit 1
i

Renmove $1 fromthe parmline

UNI T=$1
shift

Find all the entries we're interested in
grep "/pub/$UNIT* $LOGFI LE > $TEMPFI LE

Right — for every other parameter on the conmand |ine, we perform
somne
for ACTITON in $@
do
process_action "$ACTI ON'
done

Renove Tenp file
rm $TEMPFI LE

Ok, afew points to note:

§ Notice the use of the variables LOGFI LE and TEMPFI LE? These would
have to be defined somewhere above the code segment.

§ Weremove thefirst parameter from the command line and assign it to
another variable. We do this using the shift command.

§ Weusegr ep tofind al the entriesin the original log file that refer to the
subject we are interested in. We store these entries in atemporary file.

§ Theuse of $@in the loop to process the remaining parametersis
important. Why did we useit? Why not $* ? Hint: “123456" isn't
“1" 2" 43" 4" 5 e isit?

§ We'veinvented anew function, pr ocess_acti on - wewill usethis
to work out what to do with each action. Note that we are passing the
function a parameter. Why are we enclosing it in quotes? Does it matter if
we don't? Actualy, in thiscase, it doesn’'t matter if we call the function
with the parameter in quotes or not, as our parameters are expected to be
singlewords. However, what if we alowed commands like:

find host 138.77.3.4

If we passed this string to a function (without quotes), it would be
interpreted as:

$1="find” $2=“host” $3=138.77.3.4"

Thiswouldn’t be entirely what we want — so, we enclose the string in

David Jones, Bruce Jamieson (25/ 02/ 00) Page 46

85321, Systems Administration Chapter 8: Shell
Programming

guotes — producing:

$1="find host 138.77.3.4"

Aswe mentioned, in this case, we have single word commands, so it doesn’t
matter, however, awaystry to look ahead for problems — ask yourself the
figurative question — “Is my code going to work in therain?’.

Expand function pr ocess_acti on

We have afunction to work on — pr ocess_act i on. Again, we should
pseudo code it, then implement it. Wait! We haven't first thought about what
we want it to do — always a good idea to think before you code!

This function must take a parameter, determineif it isavalid action, then
perform some action on it. It isaninvalid action, then we should signal an
error.

Let’stry the pseudo code first:

process_action()

Now, Check what we have
case Action in
BYTES then do a function to get bytes
USERS then do a function to get a user |ist
HOSTS then do a function to get an access count
Sonet hi ng El se then echo "Unknown command $t heActi on”
esac

Right — now try the code:

process_action()

Translate to upper case
theAction="echo $1 | tr [a-z] [A-Z]®

Now, Check what we have
case $theAction in

USERS) get UserlList ;;

HOSTS) get AccessCount

BYTES) getBytes ;

*) echo "Unknown commrand $t heAction" ;
esac

Some comments on this code:

§ Note that we trandate the “action command” (for example “bytes’ ,
“users’) into upper case. Thisisanicety — it just meansthat we'll pick up
every typing variation of the action.

§ We usethe case command to decide what to do with the action. We could
have just as easily used a series of | F-THEN-ELSE-ELI F-FI
statements — this becomes horrendous to code and read after about three
conditions so case is a better option.

§ Asyou will see, we' ve introduced calls to functions for each command —
this again breaks to code up into bite size pieces (excuse the pun ;) to code.
This follows the top—down design style.

§ Wewill now expand each function.

David Jones, Bruce Jamieson (25/ 02/ 00) Page 47

85321, Systems Administration Chapter 8: Shell
Programming

Expand Function get User Li st
Now might be a good time to revise what was required of our program — in
particular, this function.

We need to produce alisting of all the people who have accessed files relating
to the subject of interest and how many times they’ ve accessed files.

Because we' ve separated out the entries of interest from the log file, we need
no longer concern ourselves with the actual files and if they relate to the

subject. We now are just interested in the users.
Reviewing the log file format:

aardvar k. com 2345 [pub/85349/1 ectures.tar. gz

flipper@ardvark.com
138.77.8.8 112 / pub/ 81120/ cpu. gi f

sl ot h@ opaz. cqu. edu. au

We see that user information is stored in the fourth field. 1f we pseudo code

what we want to do, it would look something like:

for every_ user_in the file

do
go_through_the_file_and_count _occurences
print this out

done

Expanding this a bit more, we get:

extract _users_fromfile
for user in user_list

do
count = 0
while read log file
do
if user = current_entry
t hen
f_count = count + 1
i
done
echo user count
done

Let's code this:

geEUBerList()

cut -f4 $TEMPFILE | sort > $TEMPFI LE. users
userLi st="uni g $TEMPFI LE. users

for user in $userlList

do
count =0
while read X
do
if echo $X | grep $user > /dev/nul
t hen
f_count:‘expr $count + 1°
i
done

} < $TEMPFI LE
echo $user S$count
done

rm $TEMPFI LE. user s

Some points about this code:

David Jones, Bruce Jamieson (25/ 02/ 00)

Page 48

85321, Systems Administration Chapter 8: Shell
Programming

§ Thefirst cut extractsauser list and placesit in atemp file. A uniquelist
of usersisthen created and placed into avariable.

§ For every user inthelist, thefileisread through and each line searched for
the user string. We pipe the output into / dev/ nul | .

§ If amatchismade, count isincremented.

§ Finally the user/count combination is printed.
§ Thetemporary fileis deleted.

Unfortunately, this code totally sucks. Why?

There are severa things wrong with the code, but the most outstanding
problem is the massive and useless looping being performed — thewhi | e
loop reads through the file for every user. Thisisbad. While loops within
shell scripts are very time consuming and inefficient — they are generally
avoided if, asin this case, they can be. More importantly, this script doesn’t
make use of UNIX commands which could simplify (and speed up!) our code.
Remember: don’t re-invent the wheel — use existing utilities where possible.

Let'stry it again, thistime without the while loop:
get User Li st ()

{
cut -f4 $TEMPFILE | sort > $TEMPFI LE. users # Get user list
userLi st="uni g $TEMPFI LE. users"

for user in $userlList # for every user...

do
count = grep $user $TEMPFILE.users | wc —-l‘ # count how nany tines they are
echo $user $count #in the file

done

rm $TEMPFI LE. users

Much better! We' ve replaced the while loop with a smple grep command —
however, there are still problems:

We don't need the temporary file
Can we wipe out afew more steps?
Next cut:

geEUBerList()
userList='cut -f4 $TEMPFILE | sort | uniq
for user in $userlList
do

echo $user ‘grep S$user $TEMPFILE | we -
done

Beautiful!
Orisit.
What about:

echo ‘cut-f4 $TEMPFILE | sort | unig -c'

This does the same thing...or doesit? If we didn’t care what our output looked
like, then this'd be ok — find out what’s wrong with this code by trying it and

David Jones, Bruce Jamieson (25/ 02/ 00) Page 49

85321, Systems Administration Chapter 8: Shell
Programming

the previous segment — compare the results. Hint: uni q —c produces a
count of every sequential occurrence of aniteminalist. What would happen
if weremoved thesor t ? How could we fix our output “problem”?

Expand Function get AccessCount

This function requires a the total number of unique hosts which have accessed
thefiles. Again, aswe ve aready separated out the entries of interest into a
temporary file, we can just concentrate on the hostsfield (field number one).

If we were to pseudo code this:

create_uni que_host i st

count = 0
for host in host I|ist
do

count = count + 1
done
echo count

From the previous function, we can see that a direct trandation from pseudo
codeto shell isn't always efficient. Could we skip afew steps and try the
efficient code first? Remember — we should try to use existing UNIX
commands.

How do we create aunique list? The hint isin the word unique — the uni q
command is useful in extracting unique listings.

What are we going to use as the input to the uni g command? We want alist
of all hosts that accessed the files — the host is stored in the first field of every
linein thefile. Next hint — when we see the word “field” we can immediately
assume we' re going to use the cut command. Do we haveto givecut any
parameters? Inthiscase, no. cut assumes (by default) that fields are
separated by tabs — in our case, thisistrue. However, if the delimiter was
anything else, we'd have to use a“—d” switch, followed by the delimiter.

Next step — what about the output from uni q? Where does this go? We said
that we wanted a count of the unique hosts — another hint — counting usually
means using the wc command. Thewc command (or word count command)
counts characters, words and lines. |If the output from the uni g command
was one host per line, then a count of the lines would reveal the number of
unique hosts.

So what do we have?

cut —f1
uni q
we -l
Right — how do we get input and save output for each command?

A first cut approach might be:

cat $TEMPFILE | cut —-f1 > $TEMPFILE. cut
cat $TEMPFI LE. cut | uniq > $TEMPFI LE. uni g
COUNT=' cat $TEMPFI LE.uniq | wc -I*

echo $COUNT

Thisisvery inefficient; there are several reasonsfor this:

§ Wecat afile THREE timesto get the count. We don’'t even have to use
cat if weredly try.

§ Weusetemp filesto store results — we could use a shell variable (asin the
second last line) but is there any need for this? Remember, file 10 is much

David Jones, Bruce Jamieson (25/ 02/ 00) Page 50

85321, Systems Administration Chapter 8: Shell
Programming

dower than assignments to variables, which, depending on the situation, is
dower again that using pipes.

§ Therearefour lines of code — this can be completed in one!
So, removing these problems, we are left with:

get AccessCount ()
echo ‘cut —f1 $TEMPFILE | uniq | we -l

How does this work?
§ The shell executeswhat’s between * * and thisis outputted by echo.

§ Thiscommand starts with the cut command — a common misconception
isthat cut requiresinput to be piped into it — however, cut worksjust as
well by accepting the name of afile to work with. The output from cut (a
list of hosts) is piped into uni g.

§ uni g then removesall duplicate host from the list — thisis piped into wc.
§ wc then counts the number of lines — the output is displayed.

Expand Function get Byt es

Thefinal function we have to write (Yes! We are nearly finished) counts the
total byte count of the filesthat have been accessed. Thisisactualy afairly
simple thing to do, but as you' Il see, using shell scripting to do this can be
very inefficient.

First, some pseudo code:

total = 0
while read line fromfile
do

extract the byte field
add this to the total
done

echo total
In shell, thislooks something like:

geEBytes()

byt es=0
ile read X
do
bytefield="echo $X | cut -f2°
byt es=' expr $bytes + $bytefield
done < $TEMPFI LE
echo $bytes

...which isvery inefficient (remember: looping isbad!). In thiscase, every
iteration of the loop causes three new processes to be created, two for the first
line, one for the second — creating processes takes time!

Thefollowing is abit better:

geEBytes()

list="cut -f2 $TEMPFILE
byt es=0
for nunber in $list
do
byt es=' expr $bytes + $nunber’

David Jones, Bruce Jamieson (25/ 02/ 00) Page 51

85321, Systems Administration Chapter 8: Shell
Programming
done

echo $bytes

The above segment of code still has looping, but is more efficient with the use
of alist of values which must be added up. However, we can get smarter:
geEBytes()
nunstr="cut -f2 $TEMPFILE | sed "s/$/ + /g"*
expr $nunstr 0

Do you see what we' ve done? The cut operation produces alist of numbers,

one per line. When thisis piped into sed, the end—of-line is substituted with
“ + “ —notethe spaces. Thisisthen combined into asingle line string and

stored in the variable nunst r . We then get the expr of thisstring — why do
we put the O on the end?

Two reasons:

After the sed operation, thereisan extra“ +” on the end — for example, if the
input was:

2
3
4

The output would be:

BN
++ +

This, when placed in ashell variable, looks like:
2 + 3+ 4+

...which when evaluated, givesan error. Thus, placing a0 at the end of
the string matches the final “ +” sign, and expr is happy

What if there wasn't a byte count? What if there were no entries — expr
without parameters doesn’t work — expr with O does.

So, is this the most efficient code?

Within the shell, yes. Probably the most efficient code would be a call to ank
and the use of some awk scripting, however that is beyond the scope of this
chapter and should be examined as a personal exercise.

A final note about the variables

Throughout this exercise, we' ve referred to STEMPFI LE and $LOGHI LE.
These variables should be set at the top of the shell script. LOGFI LE refersto
the location of the FTP log. TEMPFI LE isthe actual file used to store the
entries of interest. This must be a unique file and should be deleted at the end
of the script. 1t'd be an excellent ideato store thisfilein the/ t np directory
(just in case your script dies and you leave the temp file laying around — / t np
isregularly cleaned out by the system) — it would be an even better ideato
guarantee its uniqueness by including the process ID ($$) somewhere within
its name:

David Jones, Bruce Jamieson (25/ 02/ 00) Page 52

85321, Systems Administration
Programming

LCEFILE:"/var/Iog/ftp.lo%"
TEMPFI LE="/ t np/ scanl og. $%"

Thefinal program — alisting

Chapter 8: Shell

The following is the completed shell script — notice how short the codeis
(think of what it would be like if we hadn’t been pushing for efficiency!).

#!/bin/sh

#

FILE scanl og

PURPOSE: Scan FTP | og

AUTHOR Bruce Jam eson

H STORY: DEC 1997 Creat ed
#

To do : Truly astoundi ng t hings.

Apart fromthat, process a FTP | og and produce stats
#

gl obal s

LOGFI LE="ft p. | og"
TEMPFI LE="/ t np/ scanl og. $$"

#

functi ons

get AccessCount

et AccessCount ()
echo ‘cut —f1 $TEMPFILE | uniq | we -l

get User Li st))
— display the list of users who have acessed this page

et User Li st ()

~—Q HIFH v mQ HHH

userlList='cut -f4 $TEMPFILE | sort | uniq'

for user in $userlList

do
echo $user ‘grep Suser $TEMPFILE | we -
done
}
#
get Bytes
— calculate the amount of bytes transferred
?etBytes()

nunmstr="cut -f2 $TEMPFILE | sed "s/$/ + /g"*
expr $nunstr 0

process_action _ _
Based on the passed string, calls one of three functions

rocess_action()

T HHHH

Translate to upper case
theAction="echo $1 | tr [a-z] [A-Z]®

Now, Check what we have
David Jones, Bruce Jamieson (25/ 02/ 00)

— di splay nunber of unique machi nes that have accessed the page

Page 53

85321, Systems Administration Chapter 8: Shell
Programming
case $theAction in
BYTES) getBytes ;
USERS) get UserlList ;;
HOSTS) get AccessCount
*) echo "Unknown commrand $t heAction" ;
esac

#-——— Main
#

i f [n $1II = nn]

t hen
echo "No unit specified"
exit 1

fi

UNI T=$1

Renmove $1 fromthe parmline
shift

Find all the entries we're interested in
grep "/pub/$UNIT* $LOGFI LE > $TEMPFI LE

Right — for every paraneter on the command |ine, we perform sone
for ACTION in $@
do
process_action "$ACTI ON'
done

Renove Tenp file
rm $TEMPFI LE

We're finished

Final notes

Throughout this chapter we have examined shell programming concepts
including:

variables

comments

condition statements
repeated action commands
functions

recursion

traps

efficiency, and

structure

w W W W W W W W W

Be aware that different shells support different syntax — this chapter has dealt
with bourne shell programming only. Asafinal issue, you should at some
time examine the Perl programming language as it offers the full functionality
of shell programming but with added, compiled—code like features — it is often
useful in some of the more complex system administration tasks.

Review Questions
David Jones, Bruce Jamieson (25/ 02/ 00) Page 54

85321, Systems Administration Chapter 8: Shell
Programming

8.1

Write afunction that equates the username in the scani t program with the
user’sfull name and contact details from the/ et ¢/ passwd file. Modify
scani t soitsoutput looks something like:

*** Restricted Site Report ***

The following is a list of prohibited sites, users who have
visited them and on how nany occasi ons

Bruce Jam eson x9999 nucus. slinme.com 3
El vira Tonsl oy x1111 mucus.slinme.com1

El vira Tonsl oy x1111 xboys.funnet.comfr 3
Elvira Tonsl oy x1111 warez.under.gr 1

(Hint: thefifth field of the passwd file usually contains the full name and
phone extension (sometimes))

8.2

Modify scani t so it produces a count of unique user/badsite combinations
like the following:

*** Restricted Site Report ***

The following is a list of prohibited sites, users who have
visited them and on how nany occasi ons

Bruce Jam eson x9999 nucus. slinme.com 3

El vira Tonsl oy x1111 mnucus.slinme.com1

El vira Tonsl oy x1111 xboys.funnet.comfr 3
Elvira Tonsl oy x1111 warez.under.gr 1

4 User/Site conbi nations detect ed.

8.3

Modify scani t so it produces a message something like:

There were no users found accessing prohibited sites!
if there were no user/badsite conbinations.

References

Kochan S.G. et a "UNIX Shell Programming” SAMS 1993, USA
Jones, D "Shell Programming” WWW Notes
Newmarch, J "Shell Programming"

http://pandonia.canberra.edu.au/OS/13_1.html

Sourceof scani t

#! / bi n/ bash
#
AUTHOR: Bruce Jam eson

David Jones, Bruce Jamieson (25/ 02/ 00) Page 55

HHEHFHHHFEHFHEFEEHEFFERS

85321, Systems Administration Chapter 8: Shell

Programming
DATE: Feb 1997
PROGRAM scani t
PURPOSE: Programto anal yse the output froma network
nmonitor. "scanit" accepts a list of users to
and a list of "restricted" sites to conpare
with the output fromthe network nonitor.

FI LES: scani t shel | script
netwat ch out put from network nonitor
netnasties restricted site file

NOTES: This is a totally nmade up exanple - the nanes
of persons or sites used in data files are
not in anyway related to reality - any
simlarity is purely coincidental :)

H STORY: bl eak and troubled :)

gheckfile()

Goes through the netwatch file and saves user/site
conbinations involving sites that are in the "restricted"
1ist

whi |l e read buffer
do
user name=' echo $buffer | cut -d" " -f1
site="echo $buffer | cut -d" " -f2 | sed s/\\\.//g'
Lor checksite in $badsites
o}
checksite="echo $checksite | sed s/\\\.//¢
echo $checksite $site
if ["$site" = "$checksite"]
t hen
user si t e="$user name$checksi t e"
if eval [\$Pusersite]
t hen
eyal $usersite=\‘expr \$$usersite + 1*
el se
f_eval $usersite=1
i
fi
done
done < netwatch

produce_report ()

ge

CGoes through all possible conbinations of users and
restricted sites — if a variable exists with the conbi nation
it is reported
for user in $*
do
Lor checksite in $badsites
0]
writesite="echo $checksite
checksite="echo $checksite | sed s/\\\.//¢
user si t e="$user $checksit e"
if eval [\$Pusersite]
t hen
eval echo "$user: $witesite \$$usersite"”
f_usercount:‘expr $usercount + 1°
i
done
done

t _passwd_users()
Creates a user |list based on the /etc/passwd file
whil e read buffer
do
user nanme=' echo $buffer | cut -d":" -f1

David Jones, Bruce Jamieson (25/ 02/ 00)

Page 56

85321, Systems Administration
Programming
the_user_list="echo $usernanme $the_user _|ist"
done < /etc/passwd

check data files()

if [-r netwatch —-a -r netnasties]
t hen
return O
el se
f_return 1
i

}

Main Program
Uncomment the next |ine for debug node
#set —-Xx

if check_data_files
t hen
echo "Datafiles found"
el se
echo "One of the datafiles missing — exiting"
f_exit 1
i

user count =0)
badsi t es=' cat net nasti es’

if [$1]
t hen
the user |ist=%*
el se
~get_passwd_users
i
echo
echo "*** Restricted Site Report ***"
echo

echo The following is a list of prohibited sites,
echo visited them and on how nmany occasi ons
echo

Chapter 8: Shell

users who have

checkfile
produce report $the user |ist
echo
if [Susercount -eq O]
t hen
echo "There were no users found accessing prohibited sites!"
el se
echo "$usercount prohibited user/site conbinations found."
fi
echo
echo
END scanit

David Jones, Bruce Jamieson (25/ 02/ 00)

Page 57

